

Efficient Climate System for Mobile Air Conditioning

F.Wieschollek, A.Windt Aachen, 2011

Agenda

- Motivation
- Component and System Approach
- Results for Cooling Performance
- Investigation on Efficiency and Fuel Consumption
- Summary and Outlook

Motivation for System Development

Growing legislator attention to reduce CO₂ emissions:

- For vehicle operation (homologation drive cycles)
- For systems operation (e.g. air conditioning)
- CO₂ equivalent emissions (GWP of refrigerant type, refrigerant leakage)

Examples:

- EPA Green House Gas Rules 40 CFR Parts 85, 86, and 60 including credits for A/C system efficiency improvements and low leakage A/C systems
- EU Regulation (EC) 443/2009 to reduce CO₂ vehicle emissions
- EU Directive 2006/40/EC banning the use of refrigerants with a GWP >150 and limiting systems leakage

New development on <u>system level</u> demands:

- Reduce component and system weight
- Increase efficiency
- Implementation of low-GWP refrigerant as alternative to R134a
- Reduce systems leakage

Efficient Climate System

System level demands on mass - efficiency - leakage - Low-GWP refrig.

- New designs for connectors of refrigerant lines for decreased (eliminated) direct emissions of refrigerant
- Smaller, more compact components (downsizing of compressor displacement, heat exchanger core thickness)
- Coaxial tube IHX with increased heat exchanger capacity

 Performance requirements, package conditions & environmental aspects drive system layout, component selection, integration & tuning

Component Development

Visteon[®]

- Issues with conventional polymeric seals:
 - Refrigerant migration through the material (direct emissions)
 - Damage, incorrect assembly and contamination of seal (additional unintended refrigerant leakage)
- Metal seal fitting to minimize refrigerant leakage:
 - Utilizes metal to metal sealing surfaces for primary tight sealing
 - Full flow (no restriction to cause pressure drop)
 - Robust to contamination (hair, metal chips, plastic, etc)
 - Robust to rough handling (nested seal and sealing surfaces)
 - Robust to assembly misalignment (proper piloting)

Component and System Development

- Internal heat exchanger (IHX) for increased cooling capacity and/or enhanced system efficiency
- Refrigerant properties impact IHX design parameters
 - R1234yf has lower capacity and efficiency than R134a in A/C systems
- Component impacts system behavior (tuning required)
 - Due to thermodynamic properties R1234yf compressor discharge temperature is ~10K lower than with R134a
- Base IHX modified for R1234yf:
 - Enhanced heat transfer at comparable pressure drop
 - Utilizes the lower compressor discharge temperatures to improve R1234yf efficiency and capacity compared to R134a

System Integration

- A/C system for midsize production vehicle (SOP 2010) was upgraded:
 - C-segment MPV
 - Single evaporator system
 - Air side temperature control with blend door
 - Refrigerant R134a

Components	Production System w/ R134a	Visteon Efficient System /w R1234yf	∆Weight
HVAC	2-zone	unchanged	—
Evaporator	58 mm P/F	45 mm T/F	Ţ
Expansion device	TXV	EXV	1
Compressor	VS16	VSe14 (w/ clutch & oil sep.)	↓
Condenser w/ integrated receiver/drier	16 mm	12 mm	•
IHX	Production design	Modified	-
Refrigerant lines	standard	modified for shorter IHX	

Test Results: Cooling Performance

• Pull down test at 43° C/40 % rH, sunload 1000 W/m² acc. to customer specification

Base system meets customer targets

Test Results: Cooling Performance

Efficient system tested at same conditions, but R1234yf as refrigerant

Same performance at 50 km/h, advantage at 100 km/h, nearly same idle performance

Test Results: Fuel Consumption

- Evaluation based on NEDC procedure
- Vehicle test runs with A/C off / base R134a / modified R1234yf system at different ambient conditions
 - Preconditioning to heat up the engine
 - Temperature soak
 - 2 NEDC cycles for each test session
 - Both systems controlled to same interior conditions

	NEDC @ 25° C	NEDC @ 35° C	
Blower	Step 3	Step 4	
AC-Settings	Reheat	Reheat	
Air-Settings	Panel Fresh	Panel Fresh	
Sunload	no	no	
Soak (Ave. Breath)	25° C	50° C	

Test Results: Fuel Consumption

Absolute fuel reduction of 0,14 and 0,32 l/100 km at ambient temperature of 25° C and 35° C

Fuel reduction for add on of 18 % at 25° C and 14 % at 35° C

Test Results: Analysis

- Visteon®
- Comparison of refrigerant cycles at ambient temperature 25° C during constant conditions
 - Same COP for both refrigerants allthough R1234yf has a disadvantage regarding thermodynamical properties
 - Adapted (higher) suction pressure for effective R1234yf system during NEDC leads to lower compressor power

Summary

- Optimization of components regarding mass reduction, efficiency increase, leakage elimination and adaptation of new working fluids supports changing legislative situation
- Visteon used reengineered components to build new climate system for testing on the vehicle level
 - → R1234yf system with efficiency enhancements reaches same performance as base R134a system
 - → Fuel consumption at the same cooling performance could be reduced by 0,3 l/100 km at 35° C. This results a reduction of CO₂ tailpipe emission by 7 g/km in the NEDC cycle
- Results for component and system development can be used for climatization of hybride and electrical vehicle effecting the driving distance

