

Forschungsvereinigung Automobiltechnik

The influence of heating and air conditioning systems on the cruising range of electric cars

12. Oktober 2011 - Dr. Christof Böttcher, Martin Konz

Contents

- Introduction
- Methodological approach
 - Vehicle parameters
 - Modeling of internal space and AC system
 - Boundary conditions and reference scenarios
 - Driving cycle and cruising range evaluation
 - Results
 - · ...
- Conclusion and summary

Introduction

Introducing the FAT

- FAT = Forschungsvereinigung Automobiltechnik
- Formation of the FAT in 1971
- Preparing and supporting research projects
- Community research program of the VDA manufacturers and subcontractors
- Publishing the results:
 - FAT-Series
 - FAT-Symposia and engineering conferences of the VDA
 - o FAT-Webpage

Introduction

Motivation / Goals of the study

Motivation

- Cruising range is highly impacted due to the relatively low energy density of electric storage systems in electric vehicles
- Heating and air conditioning systems need to meet <u>new</u> requirements

Goals

- <u>Evaluation</u> and <u>Analysis</u> of heating and air conditioning concepts
- Development of new concepts

Vehicle parameters

The FAT working group "AC systems" defined an electric vehicle with 4 seats ("Golf-class") and the following parameters:

Driving power: 80 kW

Vehicle weight: 1600 kg

> Vmax: 160 km/h

Cruising range: 190 km

Battery capacity: 30 kWh

Modeling of cabin and AC system

Modeling of cabin and AC system

Modeling of cabin and AC system

Boundary conditions and reference scenarios

	Heating scenario	Cooling scenario
Solar radiation	100 W/m ² Vertical	1000 W/m ² Vertical
Ambient temperature	-20°C20°C In 5K steps	10°C35°C In 5K steps
Ambient humidity	50 rH	50 rH
Comfort temperature	20°C	20°C
Air mass flow	3 kg/min	8 kg/min

Driving cycle and cruising range evaluation

Energy consumption of ONE driving cycle is used to evaluate the cruising range

Contents

Results

- Cooling scenario
- Heating scenario
- Insulation of bodywork
- Circulating air mode (window deicing and anti fogging)
- Heat pump operation
- Usage of optimized glazing
- Variation of the thermal relevant passenger compartment mass
- Combination of different measures

Boundary conditions and reference scenarios

Results – Measures in stationary phase

Cool down - Cruising range

Results – Measures in stationary phase

Cool down - Comfort

Boundary conditions and reference scenarios

Results – Measures in stationary phase

Heating – Cruising range

Results – Measures in stationary phase

Heating – Comfort

Measures

Overview

- Measures in stationary phase
- Variation of the relevant thermal mass in the passenger compartment
- Air recirculation (window deicing and anti-fogging)
- Heat pump operation
- Body work insulation
- Optimized glazing

Results – Thermal mass Overview

	Mass	Characterization
Version I	300 kg	Golf-class
Version II	100 kg	Lightweight design

Results – Thermal mass

Results – Thermal mass

Results – Thermal mass

Overview

- Variation of the recirculating mass flow
 - 1. Fresh air
 - 2. 50% recirculating air
 - 3. 80% recirculating air
- Comfort potentially reduced
 - \circ CO_2
 - Odor
 - Fogged windows

Comfort

Results – Heat pump

Overview

Overview

Heat transfer coefficient is reduced from 2,3 W/(m²/K) to 0,5 W/(m²/K) (typical value for refrigerated trucks)

Thermal Entry Comfort

Thermal Entry Comfort

Summary

Effects of bodywork insulation:

- Reduced entry comfort in summer scenarios without preconditioning
- Increased cruising range in every temperature scenario (except -20°C) with preconditioning
- Reduced cruising range without preconditioning when cooling down

Suitable for general use?

Optimized glazing (reduced transmission)

Thermal entry comfort

Overview

- Measures are sequently applied:
 - 1. Reference
 - 2. Stationary measures
 - 3. Heat pump operation
 - 4. Air recirculation
 - 5. Insulated bodywork
- An individual consideration of single measures is not possible

(To rate individual measures in this package the sequence has to be followed)

Heating – Cruising range

Heating – Cruising range

Outside temperature

Cool down - Cruising range

Cool down - Cruising range

Conclusion

- Huge drops in cruising range due to heating and ACoperation if no measures are applied
- Air recirculation and measures for stationary phases have great potential
- Positive impacts with heat pump operation
- Insulated bodywork is beneficial in combination with measures in stationary phase only
- Car glasses influence the entering comfort but has little effect on cruising range
- Combining appropriate measures results in very less cruising range loss while realizing a wide temperature range

